9 research outputs found

    Spatio-temporal framework for integrative analysis of zebrafish development studies

    Get PDF
    Bio-informatica kan omschreven worden als het toepassen van algoritmen om meerwaarde te verkrijgen uit data afkomstig van biomedisch en/of biologisch onderzoek. In bio-informatica wordt onderzoek gedaan met grote gegevens verzamelingen die afkomstig zijn uit biomedisch en/of biologisch experimenten. Het doel van dit onderzoek is komen tot nieuwe inzichten vanuit de gegevens verzameling. Deze inzichten komen tot stand door de goede organisatie van de data, het linken naar en integreren met complementaire gegevens verzamelingen en ontwikkelen en toepassen van analytische methodieken. Als bio-informatica groep onderzoeken wij het inrichten en ontwikkelen van een 3D spatio-temporele data omgeving voor ontwikkelingsstudies van het zebravis model organisme. De expressie van genen in spatio-temporale patronen vormt de basis van het ontwikkelingsproces. Voor onderzoekers is een begrip van deze patronen in sam enhang met de anatomische ontwikkeling belangrijk; hoe vormen de patronen de basis voor vorm verandering en welke genen kunnen bij dergelijke veranderende patronen betrokken zijn. In deze context hebben wij een omgeving ontwikkeld voor spatio-temporele gegevens uit embryonische studies van het zebravis modelsysteem.LEI Universiteit LeidenImagin

    Developmental anatomy ontology of zebrafish: an integrative semantic framework

    Get PDF
    Integration of information is quintessential to make use of the wealth of bioinformatics resources. One aspect of integration is to make databases interoperable through well annotated information. With new databases one strives to store complementary information and such results in collections of heterogeneous information systems. Concepts in these databases need to be connected and ontologies typically provide a common terminology to share information among different resources.Our focus of research is the zebrafish and we have developed several information systems in which ontologies are crucial. Pivot is an ontology describing the developmental anatomy, referred to as the Developmental Anatomy Ontolgoy of Zebrafish (DAOZ). The anatomical and temporal concepts are provided by the Zebrafish Information Network (ZFIN) and proven within the research community. We have constructed a 3D digital atlas of zebrafish development based on histology; the atlas is series of volumetric models; in each instance, every volume element is assigned to an anatomical term. Complementing the atlas we developed an information system with 3D patterns of gene expression in zebrafish development based on marker genes. The spatial and temporal annotations to these 3D images are drawn from the ontology that we have designed. In its design the DAOZ ontology is structured as a Directed Acyclic Graph (DAG). Such is required to find unique concept paths and prevent self referencing.As we need to address the ontology in a direct manner, the DAG structure is transferred to a database. The database is used in the integration of our databases that share concepts at different levels of aggregation. In order to make sure that sufficient levels of aggregation for applications in mind are present, the original vocabulary was enriched with more relations and concepts. Both databases can now be addressed with the same unique terms and co-occurrence and co-expression of genes can be readily extracted from the databases. Integration can be further extended to the ZFIN resource and also by including ontologies that relate to gene/gene expression (e.g. Gene Ontology). In this manner, interoperable information retrieval from heterogeneous databases can be realized. This greatly facilitates processing complex information and retrieving relations in the data through machine learning approaches.Computer Systems, Imagery and Medi

    Mining and Analysing Spatio-Temporal Patterns of Gene Expression in An Integrative database Framework

    No full text
    Mining patterns of gene expression provides a crucial approach in discovering knowledge such as finding genetic networks that underpin the embryonic development. Analysis of mining results and evaluation of their relevance in the domain remains a major concern. In this paper we describe our explorative studies in support of solutions to facilitate the analysis and interpretation of mining results. In our particular case we describe a solution that is found in the extension of the Gene Expression Management System (GEMS), i.e. an integrative framework for spatio-temporal organization of gene expression patterns of zebrafish to a framework supporting data mining, data analysis and patterns interpretation As a proof of principle, the GEMS has been equipped with data mining functionality suitable for spatio-temporal tracking, thereby generating added value to the submission of data for data mining and analysis. The analysis of the genetic networks is based on the availability of domain ontologies which dynamically provides meaning to the discovered patterns of gene expression data. Combination of data mining with the already presently available capabilities of GEMS will significantly augment current data processing and functional analysis strategie

    Zebrafish development and regeneration: new tools for biomedical research

    Get PDF
    Basic research in pattern formation is concerned with the generation of phenotypes and tissues. It can therefore lead to new tools for medical research. These include phenotypic screening assays, applications in tissue engineering, as well as general advances in biomedical knowledge. Our aim here is to discuss this emerging field with special reference to tools based on zebrafish developmental biology. We describe phenotypic screening assays being developed in our own and other labs. Our assays involve: (i) systemic or local administration of a test compound or drug to zebrafish in vivo; (ii) the subsequent detection or "readout" of a defined phenotypic change. A positive readout may result from binding of the test compound to a molecular target involved in a developmental pathway. We present preliminary data on assays for compounds that modulate skeletal patterning, bone turnover, immune responses, inflammation and early-life stress. The assays use live zebrafish embryos and larvae as well as adult fish undergoing caudal fin regeneration. We describe proof-of-concept studies on the localised targeting of compounds into regeneration blastemas using microcarriers. Zebrafish are cheaper to maintain than rodents, produce large numbers of transparent eggs, and some zebrafish assays could be scaled-up into medium and high throughput screens. However, advances in automation and imaging are required. Zebrafish cannot replace mammalian models in the drug development pipeline. Nevertheless, they can provide a cost-effective bridge between cell-based assays and mammalian whole-organism models.

    Zebrafish development and regeneration: new tools for biomedical research

    No full text
    Basic research in pattern formation is concerned with the generation of phenotypes and tissues. It can therefore lead to new tools for medical research. These include phenotypic screening assays, applications in tissue engineering, as well as general advances in biomedical knowledge. Our aim here is to discuss this emerging field with special reference to tools based on zebrafish developmental biology. We describe phenotypic screening assays being developed in our own and other labs. Our assays involve: (i) systemic or local administration of a test compound or drug to zebrafish in vivo, (ii) the subsequent detection or "readout" of a defined phenotypic change. A positive readout may result from binding of the test compound to a molecular target involved in a developmental pathway. We present preliminary data on assays for compounds that modulate skeletal patterning, bone turnover, immune responses, inflammation and early-life stress. The assays use live zebrafish embryos and larvae as well as adult fish undergoing caudal fin regeneration. We describe proof-of-concept studies on the localised targeting of compounds into regeneration blastemas using microcarriers. Zebrafish are cheaper to maintain than rodents, produce large numbers of transparent eggs, and some zebrafish assays could be scaled-up into medium and high throughput screens. However, advances in automation and imaging are required. Zebrafish cannot replace mammalian models in the drug development pipeline. Nevertheless, they can provide a cost-effective bridge between cell-based assays and mammalian whole-organism model
    corecore